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Abstract

Scalable management of distributed resources is one of the major challenges in deployment of large-scale clusters. Man-

agement includes transparent fault tolerance, efficient allocation of resources, and support for all the needs of parallel

applications: parallel I/O, deterministic behavior, and responsiveness. These requirements are daunting with commodity

hardware and operating systems since they were not designed to support a global, single management view of a large-scale

system. In this paper we propose a small set of hardware mechanisms in the cluster interconnect to facilitate the imple-

mentation of a simple yet powerful global operating system. This system, which can be thought of as a coarse-grain SIMD

operating system, allows commodity clusters to grow to thousands of nodes while still retaining the usability and responsive-

ness of the single-node workstation. Our results on a software prototype show that it is possible to implement efficient and

scalable system software using the proposed set of mechanisms.

Keywords: Cluster computing, cluster operating system, fault tolerance, network hardware, debuggability, resource man-

agement.

1 Introduction

Although workstation clusters are a common platform for high-performance computing (HPC), they remain more difficult

to manage than single-node systems or symmetric multiprocessors. Furthermore, as cluster size increases, the role of the
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system software—essentially all of the code that runs on a cluster other than the applications—becomes increasingly more

important. The system software’s main components include the communication library, the resource manager, the parallel

file system, the cluster monitoring software, and the software infrastructure to implement fault tolerance. The quality of the

system software not only affects application performance but also the cost of ownership of such machines.

Interconnection network and system software design for high-performance computational clusters traditionally rely on a

common abstract machine that clearly separates their roles. This abstract machine sees the network simply as a mechanism

for moving information from one processing node to another with a performance expressed by latency and bandwidth. This

functional interface is simple and general enough to develop most system software, and can be implemented in several

different ways. The success of this interface also relies on the implicit assumption that any performance improvement in both

latency and bandwidth can be directly inherited by the system software.

Abstract interfaces may change to exploit new hardware capabilities. For example, in the last decade this basic abstract

interface has been augmented to exploit distributed shared memory. This approach was pioneered by communication layers

such as Active Messages [33] that emulated a virtual address space by using physically addressed network interfaces. Active

Messages proved that the use of a global shared memory could greatly simplify the communication library and increase its

performance. This successful experience influenced the design of the Cray T3D and the Meiko CS-2, that provided remote

direct memory access (RDMA). A global, virtually addressed shared memory is now a common feature in networks as

Quadrics [25] or Infiniband [23].

In this paper we try to answer the following question. What hardware features, and thus which abstract interface, should

the interconnection network provide to the system software designers?

We argue that the efficient and scalable hardware implementation of a small set of network primitives that perform global

queries and distribution of data is essential to support most system software and user applications. These primitives can be

easily implemented in hardware with current technology and can greatly reduce the complexity of most system software. In

a sense they represent the least common denominator of the various components of the cluster software, and the backbone to

integrate a collection of local operating systems (OS) into a single, global OS.

This paper makes the following contributions. First, it makes the case for the importance and the potential of having these

primitives for global coordination implemented in hardware. Second, it outlines a new approach to system management,

buffered coscheduling (BCS) [24], that is based on these primitives. One of BCS’s goals is to simplify system software

design by enforcing global coordination of all the activities in a cluster. Third, a series of case studies shows how important

parts of the system software can benefit from these primitives. We provide experimental evidence that resource management

and job scheduling can can be implemented on thousands of nodes and achieve the same level of responsiveness as a dedi-

cated workstation, without any significant increase in complexity. Finally, we describe how a popular communication library,

the Message Passing Interface (MPI), can be implemented with these global coordination primitives. The proposed imple-
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mentation is so simple that it can run almost entirely on the network interface card (NIC) as fast as the production-quality

MPI.

The rest of the paper is organized as follows. The next section describes some of the system tasks required on clusters and

the problems that need to be addressed to achieve responsive and scalable environments. Section 3 details the core primitives

and mechanisms that constitute the building blocks of our proposed scalable system software. Section 4 presents several

case studies and reports several experimental results obtained on our working software prototype on three different clusters.

Section 5 concludes and offers directions for future research.

2. Challenges in the Design of System Software

Many of today’s fastest supercomputers are composed of commercial-off-the-shelf (COTS) workstations connected by a

fast interconnect. These nodes typically use commodity operating systems such as Linux to provide an hardware abstraction

layer to programmers and users. These OSes are quite adequate for the development, debugging, and running of applications

on independent workstations and small clusters. However, such a solution is often insufficient for running demanding HPC

applications in large clusters.

Common cluster solutions include middleware extensions on top of the workstation operating system, such as the MPI

communication library [29] to provide some of the functionality required by these applications. These components tend to

have many dependencies and their modular design may lead to redundancy of functionality. For example, both the communi-

cation library and the parallel file system used by the HPC applications implement their own communication protocols. Even

worse, some desired features such as multiprogramming, garbage collection, or automatic checkpointing are either not sup-

ported at all or are very costly in terms of both development costs and overall performance degradation. Consequently, there

is a growing gap between the services enjoyed on a workstation and those provided to HPC users, forcing many application

developers to complement these services in their application. Table 1 overviews several of these gaps in terms of the basic

functionality required to develop, debug, and effectively use parallel applications. Next we discuss some of the gaps in detail.

Job launching. Virtually all modern workstations allow simple and quick launching of jobs, thus enabling interactive tasks

such as debugging sessions or visual applications. In contrast, clusters offer no standard mechanism for launching parallel

jobs. Typical workarounds rely on shell scripts or particular middleware. Job launching times can range anywhere from

seconds to hours and are usually far from interactive. Many solutions were suggested in the past to this problem, ranging

from the use of generic tools such as rsh and NFS, to sophisticated programs such as RMS [10], GLUnix [13], Cplant

[27], BProc [15], and SLURM [17]. Some of these systems use tree-based algorithms to disseminate binary images and

data to compute nodes, which can shorten job-launch times significantly. However, because of their reliance on software

mechanisms, with larger clusters (thousands of nodes) these systems may be expected to take many seconds or minutes to
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Table 1. System tasks in workstations and clusters
Characteristic Workstation Cluster

Job Launching Operating system (OS) Scripts, middleware on top of OS
Job Scheduling Timeshared by OS Batch queued or gang scheduled with large quanta

(seconds to minutes) using middleware
Communication OS-supported standard IPC mecha-

nisms and shared memory
Message Passing Library (MPI) or Data-Parallel
Programming (e.g. HPF)

Storage Standard file system Custom parallel file system
Debuggability Standard tools (reproducibility) Parallel debugging tools (non-determinism)
Fault Tolerance Little or none Application / application-assisted checkpointing
Garbage collection (GC) Run-time environment such as Java

or Lisp
Global GC very difficult due to nondeterminism
of data’s live state [18]

launch parallel jobs.

Job scheduling. In the workstation world it is taken for granted that several applications can be run concurrently using time

sharing, but this is rarely the case with clusters. Most middleware used for parallel job scheduling use simple versions of

batch scheduling (or gang-scheduling at best). This affects both the user’s experience of the machine, which is less responsive

and interactive, and the system’s utilization of available resources. Even systems that support gang scheduling typically revert

to relatively high time quanta to hide the high overhead costs associated with context switching a parallel job in software.

The SCore-D [16] scheduler uses a combination of software and hardware to perform the global context switch relatively

efficiently. A software multicast is used to synchronize the nodes and force them to flush the network state to allow each job

the exclusive use of the network for the duration of its time slice. The flushing of the network context and the use of software

multicast can have a detrimental effect on the time quanta when using a cluster size of more than a few hundreds of nodes.

In the SHARE gang scheduler of the IBM SP2 [12], network context is switched by software, where messages that reach

the wrong process are simply discarded. This incurs significant communication overhead as processes need to recover lost

messages. The CM-5 had a gang-scheduling operating system (CMOST) and a hardware support mechanism for network

preemption called All-Fall-Down [31]. In this system, all pending messages at the time of a context switch fall down to the

nearest node regardless of destination. This creates noticeable delays when the messages need to be re-injected to the system.

Even more significantly, this implies that message order and arrival time are completely unpredictable, making the system

hard to debug and control. Other machines such as the Makbilan [7] and CMOST [31] also had some hardware support for

context-switching. However, these specialized machines cost more and do not scale as well as contemporary COTS clusters.

Communication. User processes running in a workstation communicate with each other using standard interprocess com-

munication mechanisms provided by the OS. While these may be rudimentary mechanisms that provide no high-level ab-

straction, because of their low synchronization requirements they are adequate for serial and coarse-grained distributed jobs.

Unlike these jobs, HPC applications require a more expressive set of communication tools to keep the software development
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effort manageable.

The prevailing communication model for modern HPC applications is message passing, where processes use a commu-

nication library to send synchronous and asynchronous messages to each other. Of these libraries, the most commonly used

are MPI [29] and PVM [30]. These libraries offer standards that facilitate portability across various cluster and MPP archi-

tectures. However, in order to improve the latency and bandwidth for single messages, much effort is required to tune these

libraries to different platforms. Another problem is that these libraries offer low-level mechanisms that force the software

developer to focus on implementation details, and make modeling application performance difficult. In order to simplify and

abstract the communication performance of applications, several models have been suggested.

The well-known LogP model developed by Culler et al. [6] focuses on latency and bandwidth in asynchronous message

passing systems. A higher level abstraction is the Bulk-Synchronous Parallel (BSP) model introduced by Valiant et al. [32].

Computation is divided into supersteps so that all messages sent in one superstep are delivered to the destination process

at the beginning of the the next superstep. All the processes synchronize between two consecutive supersteps. This model

constitutes the first attempt to optimize the communication pattern as a whole rather than optimizing latency and bandwidth

for individual messages.

Determinism. Serial applications are much easier to debug compared to their parallel counterparts: their inherent deter-

minism makes many problems easy to reproduce. In contrast, for a large parallel program the trace of just message passing

may have a practically unbounded number of correct orderings; the difficulty of debugging an inherently non-deterministic,

asynchronous system is exacerbated by interference by the debugging tools itself as it imposes constraints on execution

(reduces non-determinism).

Fault tolerance. Non-determinism also makes fault tolerance using checkpointing challenging because the application is

rarely known to be in a state wherein all processes and in-transit messages are synchronized. Fault tolerance on workstations

is not considered a major problem and thus rarely addressed by the OS. On large clusters, however, where the high number

of components results in a low mean time between failures and the amount of computation cycles invested in the program is

significant, fault tolerance becomes one of the most critical issues. Still, there is no standard solution available, and many of

the existing solutions rely on some application modifications.

Bosilca et al. introduced a system called MPICH-V [2] to address some of these problems. Their implementation of MPI

uses uncoordinated checkpoint/rollback and distributed message logging to convalesce in case of a network fault. MPICH-

V requires a rather complex runtime environment, partly due to messages in transit that need to be accounted for. The

performance of MPICH-V varies with the application characteristics, sustaining a slowdown of up to 200% or more in some

cases. To amortize some of this overhead, the authors use a checkpoint interval of 130s.

We believe that with some minimal support from the hardware a relatively simple fault-tolerant system software can be
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implemented with much less overhead and much higher checkpoint frequency. To do that, we rely on global synchronization

and scheduling of all system activities. In that case there are points along the execution of a parallel program in which all the

allocated resources are in a known state, making it relatively straightforward to implement an algorithm to checkpoint the job

in a safe way.

2.1 Designing a Parallel Operating System

The design, implementation, debugging, and optimization of system middleware for large-scale clusters is far from trivial,

and potentially very time- and resource consuming [20]. System software is required to deal with one or more parallel jobs

comprising thousands of processes each. Furthermore, each process may have several threads, open files, and outstanding

messages at any given time. All these elements result in a large and complicated global machine state which in turn increases

the complexity of the system software. The lack of global coordination is a major cause of the non-deterministic nature of

parallel systems. The lack of synchronization also diminishes application performance, for example, when non-synchronized

system dæmons introduce computational holes that can severely skew and impact fine-grained applications [26].

To address these issues, we promote the idea of a simple, global cluster OS that makes use of advanced network resources,

just like any other HPC application. Our vision is that a cluster OS should behave like a SIMD (single-instruction-multiple-

data) application, performing resource coordination in lockstep. We argue that performing this task scalably and at sub-

millisecond granularity requires hardware support realizable by a small set of network mechanisms. Our goal in this study

is to identify and describe these mechanisms. Using a prototype system on a network that supports most of these features,

we present experimental results that indicate that a cluster OS can be scalable, powerful, and relatively simple to implement.

We also discuss the gaps between our proposed mechanisms and the available hardware, suggesting ways to overcome these

limitations.

3 Core Primitives and Mechanisms

In this section, we characterize the primitives and mechanisms that we consider essential in the development of system

software for large-scale clusters. We then explain how to use these mechanisms to overcome the challenges raised in the

previous section.

3.1 Suggested Mechanisms

The proposed architectural support consists of just three hardware-supported network primitives:

XFER-AND-SIGNAL Transfer (PUT) a block of data from local memory to the global memory of a set of nodes (possibly a

single node). Optionally signal a local and/or a remote event upon completion. By global memory we refer to data at the
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same virtual address on all nodes. Depending on implementation, global data may reside in main or network-interface

memory.

TEST-EVENT Poll a local event to see if it has been signaled. Optionally, block until it is.

COMPARE-AND-WRITE Arithmetically compare a global variable on a node set to a local value. If the condition is true on

all nodes, then (optionally) assign a new value to a (possibly different) global variable.

Note that XFER-AND-SIGNAL and COMPARE-AND-WRITE are both atomic operations. That is, XFER-AND-SIGNAL

either PUTs data to all nodes in the destination set (which could be a single node) or (in case of a network error) no nodes.

The same condition holds for COMPARE-AND-WRITE when it writes a value to a global variable. Furthermore, if multiple

nodes simultaneously initiate COMPARE-AND-WRITEs with identical parameters except for the value to write, then, when

all of the COMPARE-AND-WRITEs have completed, all nodes will see the same value in the global variable. In other

words, XFER-AND-SIGNAL and COMPARE-AND-WRITE are sequentially consistent operations [22]. TEST-EVENT and

COMPARE-AND-WRITE are traditional blocking operations, while XFER-AND-SIGNAL is non-blocking. The only way to

check for completion is to TEST-EVENT on a local event that XFER-AND-SIGNAL signals. These semantics do not dictate

whether the mechanisms are implemented by the host CPU or by a network co-processor. Nor do they require that TEST-

EVENT yield the CPU (although not yielding the CPU may adversely affect system throughput).

3.2 Implementation and Portability

The three primitives presented above assume that the network hardware provides global, virtually addressable shared

memory and RDMA. These features are present in several state-of-the-art networks like QsNet and Infiniband and their

functionality has been extensively studied [23, 25]. While the physical implementation aspects of these primitives are outside

the scope of this paper, we note that some or all of them have have already been implemented in several other interconnects,

as shown in Table 3. They were originally designed to improve the communication performance of user applications. To the

best of our knowledge their usage as an infrastructure for system software was not explored before this work.

Hardware support for multicast messages sent with XFER-AND-SIGNAL is needed to guarantee scalability for large-

scale systems. Software approaches, while feasible for small clusters, do not scale to thousands of nodes. In our case,

QsNet provides hardware-supported PUT/GET operations and events so that the implementation of XFER-AND-SIGNAL is

straightforward.

COMPARE-AND-WRITE assumes that the network is able to return a single value to the calling process regardless of the

number of queried nodes. Again, QsNet includes a hardware-supported global query operation that allows the implementation

of COMPARE-AND-WRITE.
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Table 2. Network mechanisms usage
Characteristic Requirement Solution

Job Launching Data dissemination XFER-AND-SIGNAL

Flow control COMPARE-AND-WRITE

Termination detection COMPARE-AND-WRITE

Job Scheduling Heartbeat XFER-AND-SIGNAL

Context switch responsiveness Prioritized messages / Multiple rails
Communication PUT XFER-AND-SIGNAL

GET XFER-AND-SIGNAL

Barrier COMPARE-AND-WRITE

Broadcast COMPARE-AND-WRITE + XFER-AND-SIGNAL

Storage Metadata / file data transfer XFER-AND-SIGNAL

Debuggability Debug data transfer XFER-AND-SIGNAL

Debug synchronization COMPARE-AND-WRITE

Fault Tolerance Fault detection COMPARE-AND-WRITE

Checkpointing synchronization COMPARE-AND-WRITE

Checkpointing data transfer XFER-AND-SIGNAL

Garbage Collection Live state synchronization Determinism and COMPARE-AND-WRITE

Table 3 demonstrates the expected performance of the mechanisms that are already implemented by several interconnect

technologies. While several networks already support at least some of these mechanisms (which attests to their portability),

we argue that they should become a standard part of every large-scale interconnect. We also stress that their implementation

must exhibit scalability and high performance (in terms of bandwidth and latency) for them to be useful to the system

software.

Table 3. Measured/expected performance of the core mechanisms for n nodes
Network Comparison (µs) Multicast (MB/s)

Gigabit Ethernet [28] 46 logn Not available
Myrinet [1, 4, 5] 20 logn ∼ 15n

Infiniband [23] 20 logn Not available
QsNET ([25]) < 10 > 150n

BlueGene/L [14] < 2 700n

3.3 System Software Requirements and Solutions

Next we examine the areas where current system software is lacking and explain how the proposed mechanisms can

simplify the design and implementation of practical solutions. Table 2 summarizes these arguments.

Job Launching The traditional approach to job launching, including the distribution of executable and data files to cluster

nodes, is a simple extension of single-node job launching: data is transmitted using network file systems such as NFS, and

jobs are launched with scripts or simple utilities such as rsh or mpirun. These methods do not scale to large machines where
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the load on the network file system, and the time it would take to serially execute a binary on many nodes, make them

inefficient and impractical. Several solutions have been proposed for this problem, all focusing on software tricks to reduce

the distribution time. For example, Cplant and BProc both use their own tree-based algorithm to distribute data with latencies

that are logarithmic in the number of nodes [3, 15]. While more portable than relying on hardware support, these solutions

are significantly slower and not always simple to implement [11].

Decomposing job launching into simpler sub-tasks makes more clear that it need only require modest effort to make the

process efficient and scalable:

• Executable and data distribution are no more than a multicast of packets from a file server to a set of nodes, and can

be implemented using XFER-AND-SIGNAL. We may use COMPARE-AND-WRITE for flow control to prevent the

multicast packets from overrunning the available buffers.

• Actual launching of a job can be achieved simply and efficiently by multicasting a control message to all the nodes that

are allocated to the job by using XFER-AND-SIGNAL. In response the system software on each node would then fork

the new processes and wait for their termination.

• The reporting of job termination can incur much overhead if each node sends a single message for every process that

terminates. This problem can be solved by ensuring that all the processes of a job reach a common synchronization

point upon termination (using COMPARE-AND-WRITE) before delivering a single message to the resource manager

(using XFER-AND-SIGNAL).

Job Scheduling. Interactive response times from a scheduler are required to make a parallel machine as usable as a work-

station. This in turn implies that the system must be able to perform preemptive context switching with the same latencies we

have come to expect from single processor systems, that is, on the order of a few milliseconds. Such latencies however are

virtually impossible to achieve without hardware support: the time required to coordinate a context switch over thousands of

nodes can be prohibitively large in a software-only solution. A good example of this is shown by the work on the SCore-D

software-only gang scheduler of Hori et al. [16]. They report that the time for switching the network context on a relatively

small Myrinet cluster is more than two thirds of the total context switch time. Furthermore, the context switch message is

propagated to the nodes using a software-based multicast tree, increasing in latency as the cluster grows. SCore-D has four

separate, synchronized phases for each context switch, requiring about 200 msec context-switch granularity to hide most

of the overhead in a 64-node cluster. Finally, even though the system is able to efficiently context switch between different

jobs, the coexistence of application traffic and synchronization messages in the network could unacceptably delay response

to the latter. If this occurs even on a single node for even just a few milliseconds it will have a detrimental effect on the

responsiveness of the entire system.
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To overcome these problems the network should offer some capabilities to the software scheduler to prevent these delays.

The ability to maintain multiple communication contexts alive in the network securely and reliably, without kernel interven-

tion, is already implemented in some state-of-the-art networks like QsNet. Job context switching can be easily achieved by

simply multicasting a control message or heartbeat to all the nodes in the network using XFER-AND-SIGNAL. One method

of guaranteeing quality of service for synchronization messages is to have support for message prioritization. The current

generation of many networks, including QsNet, does not yet support prioritized messages in hardware, so a workaround must

be found to keep the system messages’ latencies low. In our case, we exploit the fact that some of our clusters have dual

networks (two rails), and use one rail exclusively for system messages so that they do not compete with application-induced

traffic.

Determinism and fault tolerance. Hori et al. proposed a mechanism they called network preemption to facilitate such task

as maintaining a known state of the cluster and context switching. We believe this mechanism is certainly necessary, but not

sufficient, for an efficient solution to this problem. Even when a single application is running on the system (so that there is

only one network context, and no preemption), messages can still be en route at different times and the system’s state as a

whole is not deterministic.

When the system globally coordinates all the application processes, parallel jobs can be led to evolve in a controlled

manner. Global coordination can be easily implemented with XFER-AND-SIGNAL, and can be used to perform global

scheduling of all the system resources. Determinism can be enforced by taking the same scheduling decisions between

different executions. At the same time, the global coordination of all the system activities help to identify the states along the

program execution in which it is safe to checkpoint the status.

Communication. Most of MPI’s, TCP/IP’s, and other communication protocols’ services can be reduced to a rather basic

set of communication primitives, e.g. point-to-point synchronous and asynchronous messages and multicasts. If the underly-

ing primitives and the protocol reductions are implemented efficiently, scalably, and reliably by the hardware and cluster OS,

respectively, the higher level protocol can also inherit the same benefits of scalability, performance, and reliability. In many

cases, this reduction is very simple and can eliminate the need for many of the implementation quirks of protocols that need

to run on a variety of network hardware.

To illustrate this strategy we have implemented a small subset of the MPI library, called BCS-MPI [9], which has sufficient

functionality to support real applications. As is shown in the next section these applications have similar performance using

BCS-MPI as using production-quality versions of MPI, but have the potential to benefit from control BCS-MPI.
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4. Case Studies

To demonstrate our thesis that these mechanisms can be exploited by a scalable global OS we built a prototype resource-

management system, called STORM, and tested it on three architectures. In all cases we used the Quadrics Elan3 network as

our interconnect because it supports most of the mechanisms described in Section 3. In this section we review the performance

and scalability that can be obtained with these mechanisms on three tasks: job launching, job scheduling, and deterministic

communication.1

4.1. Software Environment

Our prototype resource-management system is composed of a set of dæmons that run on the compute nodes and manage-

ment node of a cluster [11]. It contains a network abstraction layer that uses the described mechanisms for executing tasks

such as job launching, process coordination (e.g. gang-scheduling), and resource accounting. Although currently imple-

mented as user-mode dæmons, we plan to fully incorporate the core functionality of STORM with the Linux kernel to obtain

optimal performance and latencies. The code is relatively small at around 10,000 lines of C code for the core functionality.

In addition to resource management, the core primitives can be used to implement almost any communication protocol

while still retaining the advantages of performance and determinism. Here we have implemented the previously mentioned

BCS-MPI.. To use BCS-MPI applications simply need to be re-linked against the new libraries without any code modifica-

tion. However, to achieve the best performance of BCS-MPI it can be beneficial to replace blocking communication calls

such as MPI Send() and MPI Recv() with their non-blocking counterparts. This allows BCS-MPI to aggregate several com-

munication calls together whenever possible, so improving the possibility of interleaving communication and computation.

In the following case studies we used both synthetic and real HPC applications. The applications SWEEP3D and SAGE

are representative of two hydrodynamics codes from the ASCI workload [19, 21].

4.2. Hardware Environment

For the experimental evaluation we used three different clusters at LANL/CCS-3 to test our mechanisms on different

processor architectures. The clusters are called Crescendo, Accelerando, and Wolverine. All clusters used a 128-port Quadrics

Elite switch and Quadrics software library version 1.5.0-0. Table 4 summarizes the hardware comprising each cluster.

4.3. Job Launching

In this set of experiments we study the cost associated with launching jobs with STORM and analyze STORM’s scalability

with the size of the binary and the number of PEs on Wolverine. We use the approach taken by Brightwell et al. in their study

1In [11] we study in detail other properties of STORM’s job scheduling and job launching abilities, and model their scalability.

11



Table 4. Cluster Description
Component Feature Crescendo cluster Accelerando cluster Wolverine cluster

Node Number×PEs 32×2 32×2 64×4
Memory/node 1GB 2GB 8GB
I/O buses/node 2 2 2
Model Dell PowerEdge 1550 HP Server rx2600 AlphaServer ES40
OS Red Hat Linux 7.3 Red Hat Linux 7.2 Red Hat Linux 7.1

CPU Type (speed) Pentium-III (1GHz) Itanium-II (1GHz) Alpha EV68 (833MHz)
I/O bus Type 64-bit/66MHz PCI 64-bit/133MHz PCI-X 64-bit/33MHz PCI
Network NIC model 1×QM-400 Elan3 2×QM-400 Elan3 2×QM-400 Elan3
Software Compiler Intel C/Fortran v5.0.1 Intel C/Fortran v7.1.17 Compaq’s C Compiler

of job launching on Cplant [3], which is to measure the time it takes to launch run a program of size 4 MB, 8 MB, or 12 MB

that terminates immediately.

STORM logically divides the job-launching task into two separate operations: the transmission of the binary image, and

the actual execution, which includes sending a job-launch command, forking the job, waiting for its termination, and reporting

back to the machine manager (MM). For the transmission of the binary images the MM uses XFER-AND-SIGNAL for

multicasting chunks and COMPARE-AND-WRITE for flow control. To reduce non-determinism the MM can issue commands

and receive the notification of events only at the beginning of a timeslice. Therefore, both the binary transfer and the actual

execution will take at least one timeslice. To minimize the MM overhead and expose maximal protocol performance, in the

following job-launching experiments we use a small time quantum of 1 ms.

Figure 1(a) shows the time needed to transfer and execute a do-nothing program of sizes 4 MB, 8 MB, and 12 MB on

1–256 processors. Observe that the send times are proportional to the binary size but grow only slowly with the number of

nodes. This is explained by the scalable algorithms and hardware mechanism that are used for the send operation. On the

other hand, the execution times are quite independent of the binary size but grow more rapidly with the number of nodes.

The reason for this growth is the skew that is accumulated by the processes of the job. The main cause of this skew is the

overhead of the operating system. In the largest configuration tested a 12 MB file can be launched in 110 ms, a remarkably

low latency.

We have also tested the launch times of the 12 MB file under various load conditions. In one experiment, a do-nothing

loop on all the PEs loaded the compute resources of all nodes. On the second load-inducing experiment we stressed the

network by pairing all of the processors and continuously sending long messages back and forth between them. Figure 1(b)

summarizes the difference among the launch times on loaded and unloaded systems. In this figure, the send and execute times

are shown under the three loading scenarios (unloaded, CPU loaded, and network loaded), for the 12 MB file. Note that even

in the worst scenario, a network-loaded system, it still takes only 1.5 seconds to launch a 12 MB file on 256 processors.
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Figure 1. Job Launching Performance

Table 5. A selection of job-launch times (in seconds) found in the literature
Software Job-launch time / program size

rsh 90 Minimal job on 95 nodes [13]
RMS 5.9 12 MB job on 64 nodes [11]
GLUnix 1.3 Minimal job on 95 nodes [13]
Cplant 20 12 MB job on 1,010 nodes [3]
BProc 2.7 12 MB job on 100 nodes [15]
SLURM 4.9 Minimal job on 950 nodes [17]
STORM 0.11 12 MB job on 64 nodes [11]

Scalability Issues These job launching results are comparable to other systems in the literature for clusters of up to a few

hundreds of nodes (see Table 5). Our premise is that one of the main advantages of using hardware mechanisms is that the

resource manager can inherit the scalability features of the hardware layer. To verify this property, we presented a detailed

model of STORM’s job-launching scalability in [11]. Figure 2 shows the predicted launch times of the 12 MB program on

clusters of up to 16,384 processors on an Alpha ES40 architecture, similar to that of ASCI Q [26]. In that work we have also

extrapolated the expected job-launching performance of the software-based methods found in the literature. Not surprisingly,

the hardware-supported mechanisms of STORM provide at least an order of magnitude better performance on very large

clusters. In fact, it is the only system that is expected to deliver sub-second performance on thousands of nodes.

4.4. Job Scheduling

STORM supports a variety of job scheduling algorithms including various batch and time-sharing methods. Some of

the time sharing methods require a global synchronization message (strobe), which STORM implements using XFER-AND-

SIGNAL. we have chosen to focus our evaluation specifically on gang scheduling [8], which is one of the most popular
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coscheduling algorithms. In particular we were interested in the effect of timeslice on overhead. Smaller timeslices yield

better response time at the cost of decreased throughput (due to scheduling overhead that cannot be amortized). To measure

this overhead, we use SWEEP3D and a do-nothing synthetic program, and run two copies of each concurrently, with different

timeslice values. Figure 3 shows the average run time of the two jobs for timeslice values from 300µs to 8 seconds, running

on the entire Crescendo cluster. The smallest timeslice value that the scheduler can handle gracefully is ∼300µs, any

less than which the node cannot process the incoming strobe messages at the rate they arrive. With a timeslice as short

as 2 ms STORM can run multiple concurrent instances of SWEEP3D with virtually no performance degradation over a

single instance of the application.2 This timeslice is an order of magnitude smaller than the local Linux scheduler’s quanta,

and is significantly smaller than the smallest time quanta that conventional gang schedulers can handle without significant

performance penalties [10]. This, together with brisk job launching, allows for workstation-class system responsiveness for

interactive jobs on a large parallel system.

4.5. Communication Library

In the following experiments we demonstrate the performance of BCS-MPI. Of interest here is the impact of BCS-MPI’s

global synchronization of all the nodes in order to schedule communication requests issued by the application processes. We

also provide and analyze some results comparing the performance of BCS-MPI to that of Quadrics MPI, a production-quality

implementation of MPI.

With BCS-MPI a global strobe is sent to all the nodes (using XFER-AND-SIGNAL) at regular intervals. This tightly cou-

ples all the system activities by requiring that they occur at the same time on all nodes. Both computation and communication

2This result is also influenced by the poor memory locality of SWEEP3D—the lack of a small memory working set implies minimal extra penalty for a
context switch.
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Figure 3. Effect of time quantum with an MPL of 2 on 32 nodes

are scheduled and the communication requests are buffered. At the beginning of every timeslice a partial exchange of com-

munication requirements, implemented with XFER-AND-SIGNAL and TEST-EVENT, provides the information needed for

scheduling the communication requests issued during the previous timeslice. After that all of the scheduled communication

operations are performed by using XFER-AND-SIGNAL and TEST-EVENT.

The BCS-MPI communication protocol is implemented almost entirely in the network interface card (NIC). By running

on the NIC’s processor, BCS-MPI is able to overlap the communication with the ongoing computation. The application’s

processes directly interact (transparently via the BCS-MPI library) with threads running in the NIC. When an application

process invokes a communication primitive, it simply posts a descriptor in a region of NIC memory that is accessible to a

NIC thread. This descriptor includes all the communication parameters which are needed to complete the operation. The

actual communication is performed by a set of cooperating threads running in the NICs involved in the communication

protocol (using XFER-AND-SIGNAL). In the QsNet network these threads can directly read/write from/to the application

process memory space so that no copies to intermediate buffers are required. Moreover, the posting of the descriptor is a

lightweight operation, making the entire latency of the BCS-MPI call even lower than that of the Quadrics MPI.

The communication protocol is divided into micro-phases within every timeslice and its progress is also globally synchro-

nized. To illustrate how BCS-MPI primitives work, two possible scenarios for blocking and non-blocking MPI primitives

are described in Figure 4(a) and Figure 4(b), respectively. In Figure 4(a), process P1 sends a message to process P2 using

MPI Send and process P2 receives a message from P1 using MPI Receive: (1) P1 posts a send descriptor to the NIC and

blocks. (2) P2 posts a receive descriptor to the NIC and blocks. (3) The transmission of data from P1 to P2 is scheduled since

both processes are ready (all the pending communication operations posted before timeslice i are scheduled if possible). If

the message cannot be transmitted in a single timeslice then it is chunked and scheduled over multiple timeslices. (4) The

communication is performed (all the scheduled operations are performed before the end of timeslice i + 1). (5) P1 and P2
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are restarted at the beginning of timeslice i. (6) P1 and P2 resume computation. Note that the delay per blocking primitive

is 1.5 timeslices on average. However, this penalty can be usually be avoided by using non-blocking communications or by

scheduling a different job in timeslice i + 1. Figure 4(b) shows the same situation for non-blocking MPI primitives. In this

case, the communication is completely overlapped with the computation with no performance penalty.

In Figure 5(a) the runtime of SWEEP3D for both BCS-MPI and Quadrics MPI is shown for various numbers of processes

on the Crescendo cluster. The effective overlap between computation and communication using BCS-MPI together with

the low latency of the BCS-MPI calls allow BCS-MPI to slightly outperform Quadrics MPI, with speedups of up to 2.28%.

Figure 5(b) shows the same experiment on the Accelerando cluster. Both BCS-MPI and Quadrics MPI can make use of the

second rail available in this cluster. To exploit it, BCS-MPI transmits application point-to-point messages on the second rail

while Quadrics MPI statically allocates rails to processes. We observe a small speedup of BCS-MPI over Quadrics MPI, of

1% with one rail and 2% with two rails for the largest configuration.

Scalability Issues To complete the application study and to gain a better understanding of BCS-MPI’s scalability, we show

SAGE’s performance on Crescendo with Quadrics and BCS-MPI. Unlike SWEEP3D, which requires square configurations,

SAGE can run on any number of nodes. Figure 6 shows the run time of SAGE on varying numbers of nodes, up to 62

(one node is reserved for the management software). Both versions perform similarly due to the fact that SAGE uses mostly

non-blocking point-to-point communication with a relatively large number of neighbors. Most notably, BCS-MPI performs

slightly better than Quadrics MPI for the largest configuration, which indicates that the scalability of SAGE is not an issue

with BCS-MPI and this cluster size.
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5. Conclusions and Future Work

In this paper we proposed a new abstraction layer for large-scale clusters. This layer, which can be implemented by as

few as three communication primitives in the network hardware, can greatly simplify the development of system software for

these clusters. In our model the system software is a tightly-coupled parallel application that operates in lockstep on all nodes.

If the hardware support for this layer is both scalable and efficient the system software inherits these properties. Such software

is not only relatively simple to implement but can also provide parallel programs with most of the services they require to

make their development and usage efficient and more manageable. In particular, we discuss how this abstraction layer and

the system software can be used for the implementation of efficient, deterministic communication libraries, workstation-

class responsiveness, and transparent fault tolerance. We have presented initial experimental results using a prototype system

software and advanced interconnection hardware. Our results demonstrate that scalable resource management and application

communication are indeed feasible while making the system behave deterministically. Our future work will expand on the
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use of this determinism to incorporate transparent fault tolerance into the system software. We also plan to explore other

possible benefits of a global operating system, such as coordinated parallel I/O and debugging. Lastly, since we envision a

simple, global operating system for the cluster, we plan to migrate our code into the Linux kernel. Such an integration should

also improve further the performance of the cluster operating system.

References
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